Algorithms for Strong Bisimilarity on Finite Transition Systems

COMP6752 Seminar

Joshua Lau
University of New South Wales, Sydney

May 7, 2018
Outline

1. Definitions

2. The fixed-point approach

3. An $O(nm)$ algorithm for strong bisimilarity

4. An $O(m \log n)$ algorithm for strong bisimilarity on single action LTS’

5. Handling multiple actions
We call an LTS $\mathcal{L} = (P, \Sigma, \rightarrow)$ finite if it has finitely many states and transitions.

- Let $n = |P|$ denote the number of states.
- Let $\Sigma = \{a_1, a_2, \ldots, a_{|\Sigma|}\}$ be the set of actions. Note $|\Sigma| \leq m$.
- Let $m = |\rightarrow|$ denote the number of transitions, where $\rightarrow \subseteq P \times \Sigma \times P$.

Note that there is no special τ action, as we will only deal with the notion of strong bisimulation (referred to simply as bisimulation).

We assume $n \leq m + 1$ and thus $n = O(m)$. If not, we can fuse all states with no outgoing transitions.
Partitions

Let $\pi \subseteq 2^P$.

- π is a *partition* of P if and only if $P = \bigcup \pi$.
- Each element of π is called a *block*.
- π induces an equivalence relation on P.
- Given two partitions / equivalence relations a, b we say $a \subseteq b$ (or a *refines* b) if the equivalence relation induced by a is contained in the equivalence relation induced by b.

Suppose $P = \{1, 2, 3, 4, 5\}$.

- $\{\{1, 3\}, \{4\}, \{2, 5\}\}$ is a partition of P.
- $\{\{1, 3\}, \{3, 4\}, \{2, 5\}\}$ is not a partition of P.
- $\{\{1\}, \{3\}, \{4\}, \{2, 5\}\} \subseteq \{\{1, 3\}, \{2, 4, 5\}\}$.

Refinement can be thought of as splitting blocks.
A relation \(R \subseteq P \times P \) is a **bisimulation** if every \((s, t) \in R\) satisfies the following properties:

- If \(s \xrightarrow{a} s' \) then there is some \(t' \) such that \(t \xrightarrow{a} t' \) and \((s', t') \in R\).
- If \(t \xrightarrow{a} t' \) then there is some \(s' \) such that \(s \xrightarrow{a} s' \) and \((s', t') \in R\).

Note that the empty relation is a bisimulation.

We say that two states \(s \) and \(t \) are **bisimilar** or **bisimulation equivalent**, written \(s \sim t \), if and only if there is some bisimulation containing \((s, t)\).
Given two process graphs, we would like to decide if they are bisimilar.

1. Combine the states / transitions of each of the process graphs to form one LTS.

2. The process graphs are bisimilar if and only if the initial states are related by \sim.

Fusing bisimilar states also gives the smallest process graph bisimilar to the original (the minimisation problem).
Outline

1. Definitions

2. The fixed-point approach

3. An $O(nm)$ algorithm for strong bisimilarity

4. An $O(m \log n)$ algorithm for strong bisimilarity on single action LTS’s

5. Handling multiple actions
Intuition
Intuition
Intuition
Intuition
Intuition
The fixed-point approach

Idea:

1. Start by approximating \sim by identifying all states.
2. Refine our approximation by looking “one move ahead”: that is, identify states which can reach equivalent states in a single move for every action.
3. Repeat until we can’t refine any further.

Let $R \subseteq P \times P$ be a relation on the states of P. Then define

$$\mathcal{F}_\mathcal{L}(R) = \{(s, t) | (s \xrightarrow{a} s' \implies \exists t'. t \xrightarrow{a} t' \land (s', t') \in R) \text{ and } (t \xrightarrow{a} t' \implies \exists s'. s \xrightarrow{a} s' \land (s', t') \in R)\}$$

Remark

Note that a relation is a bisimulation if and only if it is a fixed point of $\mathcal{F}_\mathcal{L}$.
The fixed-point approach

Theorem

F_L has a greatest fixed point, which is \sim.

Proof.

F_L is a monotonic function over the complete lattice $(2^{P \times P}, \subseteq)$, so we can apply the Knaster-Tarski Theorem. Hence, a greatest fixed point exists, and is a bisimulation.

Every bisimulation is a fixed point of F_L and is included in the greatest fixed point. Hence, the greatest fixed point is \sim.

\square
The fixed-point approach

Definition

Start with the relation $R_0 = P \times P$, and define $R_i = \mathcal{F}_\mathcal{L}^i(R_0) = \mathcal{F}_\mathcal{L}(R_{i-1})$ for all $i > 0$. Then we obtain that $(s, t) \in R_i$ if and only if, for every $a \in \Sigma$:

- If $s \xrightarrow{a} s'$, then there is t' such that $t \xrightarrow{a} t'$ and $(s', t') \in R_{i-1}$
- If $t \xrightarrow{a} t'$, then there is s' such that $s \xrightarrow{a} s'$ and $(s', t') \in R_{i-1}$

From the definition, it can be shown that:

- Each R_i is an equivalence relation.
- $R_i \subseteq R_{i-1}$ for all $i > 0$.
The fixed-point approach

Theorem (Hennessy and Milner, 1985)

If \mathcal{L} is (image-)finite, then $s \sim t$ if and only if $(s, t) \in R_i$ for all $i \in \mathbb{N}$.

Proof.

Omitted, but stems from the fact that if \mathcal{L} is (image-)finite, then $\mathcal{F}_\mathcal{L}$ is anticontinuous.

Algorithm

Compute R_0, R_1, \ldots until $R_{i-1} = R_i$. Then $R_i \equiv \sim$ is the greatest fixed point we desire.
The fixed-point approach

Algorithm

Compute R_0, R_1, \ldots until $R_{i-1} = R_i$. Then $R_i \equiv \sim$ is the greatest fixed point we desire.

- Each application of $\mathcal{F}_\mathcal{L}$ to R_j ($j < i - 1$) splits one or more blocks.
- This can happen at most $n - 1$ times.
- Naively, we can compute $\mathcal{F}_\mathcal{L}(R_j)$ in $O(m^2)$ time.

This gives an $O(nm^2)$ partition refinement algorithm for bisimulation!

Remark

Whenever R_0 is an equivalence relation, the algorithm computes the coarsest refinement of R_0 that is also a bisimulation.

Can we implement this partition refinement idea faster?
Outline

1. Definitions

2. The fixed-point approach

3. An $O(nm)$ algorithm for strong bisimilarity

4. An $O(m \log n)$ algorithm for strong bisimilarity on single action LTS

5. Handling multiple actions
An $O(nm)$ algorithm for strong bisimilarity

Due to Kanellakis and Smolka (1983).

Let B be a block in a partition π, and $a \in \Sigma$ be some action. We can assign each block in π a numerical ID from 1 to $|\pi|$. Then define $actionSplit(B, a, \pi)$ as follows:

Definition ($actionSplit(B, a, \pi)$)

1. If $|B| = 1$, then B can’t be split. Otherwise, let s be any state in B.
2. Find the set of blocks (by ID) that s can reach directly (in one step) through some a transition.
3. Form two sub-blocks out of the states in B: those that can reach precisely the same set as s, and those that can’t. These sub-blocks partition (split) B.
4. If one of the blocks is empty, B can’t be split by a. Otherwise, return the two sub-blocks.
Example
Example
Example
Example
Remark

Intuitively, an $\text{actionSplit}(B, a, \pi)$ performs part of the “single step” of \mathcal{F}_L.

Suppose the a transitions from each state are sorted by the block ID of the destination, for each $a \in \Sigma$.

Then, we can perform $\text{actionSplit}(B, a, \pi)$ in $O(m(B, a))$ time, where $m(B, a)$ is the total number of outgoing a transitions from states in B.

1. De-duplicate (uniq) each list of states.
2. Two sorted lists are equal if and only if their lengths are equal and corresponding elements are equal.
An $O(nm)$ algorithm for strong bisimilarity

Algorithm

Start with $\pi_0 = \{P\}$. At each step i, find a block $B \in \pi_i$, and an action $a \in \Sigma$ so that we can $\text{actionSplit}(B, a, \pi_i)$. If none, then $\sim = \pi_i$ and we are done. Otherwise, replace B in π_i with the returned sub-blocks, forming π_{i+1}. Repeat.

- At the beginning of each step, we need to (re-)sort the transitions, since states now belong to different blocks.
- We can do this in $O(n + m + |\Sigma|) = O(m)$ using Radix sort.
- We iterate over all blocks and actions, but each transition is processed in precisely one block. Thus, finding and performing an actionSplit takes $O(m)$ time.
- We can split a partition at most $n - 1$ times, so the overall time complexity is $O(nm)$.
An $O(nm)$ algorithm for strong bisimilarity

Proof.

From earlier, we know that $\sim \subseteq R_i$ for all i. By induction, we can show that $R_i \subseteq \pi_i$: it is true initially, and each actionSplit performs only part of a single step, so it splits as most as much as a single step. Hence, $\sim \subseteq \pi_i$ for all i.

Suppose we are unable to actionSplit π_j. It follows that π_j is a fixed point of \mathcal{F}_L: if we cannot perform part of a single step, then we can not perform a single step at all. Hence, $\pi_j \subseteq \sim$, since \sim is the greatest fixed point, so $\sim = \pi_j$. □
Outline

1. Definitions
2. The fixed-point approach
3. An $O(nm)$ algorithm for strong bisimilarity
4. An $O(m \log n)$ algorithm for strong bisimilarity on single action LTS
5. Handling multiple actions
Paige-Tarjan Algorithm

Due to *Paige and Tarjan* (1986).

Restrict ourselves to LTS’ with a single action.
Stability

Let B be a block in some partition π, and let $S \subseteq P$ be some subset of states.

- We say that B is stable w.r.t. S if and only if every $s \in B$ has a transition to some $s' \in S$, or none of them do.
- π is stable w.r.t. S if and only if every $B \in \pi$ is.
- π is stable w.r.t. another partition π' if and only if π is stable w.r.t. each $B' \in \pi'$.

Remark

The equivalence relation induced by a partition π is a bisimulation if and only if π is stable w.r.t. itself.
Example

Green stable w.r.t. orange.
Green **stable** w.r.t. orange.
Orange **not stable** w.r.t. green.
Green stable w.r.t. orange.
Orange stable w.r.t. green.
Stability

Theorem

1. **Stability is preserved by refinement:** if $\pi \subseteq \pi'$ and π' is stable w.r.t. S then so is π.

2. **Stability is preserved by union:** if π is stable w.r.t. S, and also w.r.t. T, then π is stable w.r.t. $S \cup T$.

Proof.

1. The condition for stability is only weakened by refinement, since the blocks in π are subsets of the blocks in π'.

2. Let B be a block in π. If every state in B has a transition to some state in S, then every state also has a transition to $S \cup T$. Otherwise, w.l.o.g., no state has a transition to S or T, as required.
Splitting

Definition

Define $\text{split}(\pi, S)$ as follows: for each block $B \in \pi$, we separate B into two sub-blocks: those that have transitions to S, and those which do not. Then, return the partition formed by all the sub-blocks, removing any empty ones.

Theorem

1. $\text{split}(\pi, S) \subseteq \pi.$
2. If π is stable w.r.t. S, then $\text{split}(\pi, S) = \pi.$
3. $\text{split}(\pi, S)$ is always stable w.r.t. $S.$

Proof.

Straightforward from the definition.
Example

\[\text{split}(\pi, \text{Green}) \]

\[\pi = \{ \text{Green, Orange} \}. \]
Example

\[\text{split}(\pi, \text{Green}) \]

\[\pi = \{\text{Green, Orange}\}. \]

Green stable w.r.t. Green, but Orange not stable w.r.t. Green.
Example

\(\text{split}(\pi, \text{Green}) \)

\[
\pi = \{ \text{Green}, \text{Orange}, \text{Blue} \}.
\]
Example

\[\text{split}(\pi, \text{Green}) \]

\[\pi = \{ \text{Green, Orange, Blue} \}. \]

All blocks stable w.r.t. each other, so \(\pi \) stable w.r.t. \(\pi \).
We can formulate a (slow) algorithm for bisimilarity as follows: start with $\pi = \{P\}$. Then, while π is not stable w.r.t. itself, choose some block $B \in \pi$ so that π is not stable w.r.t. B, and replace π with $\text{split}(\pi, B)$.

Proof.
Similar to that of the Kanellakis-Smolka algorithm: each split performs part of a “single step” (this time, based on destination block rather than source and action).
Algorithm

We can formulate a somewhat equivalent algorithm as follows: start with \(\pi = \{P\} \). Then, while \(\pi \) is not stable w.r.t. itself, choose some union of blocks \(S \) in \(\pi \) so that \(\pi \) is not stable w.r.t. \(S \), and replace \(\pi \) with \(\text{split}(\pi, S) \).

Sketch Proof.

Since we can still split based on single blocks, it remains to show that splitting based on a union of blocks doesn’t cause \(\pi \) to be finer than necessary. We observe that \(\text{split}(\text{split}(\pi, A), B) \subseteq \text{split}(\pi, A \cup B) \), and the result follows.
Three-way Splitting

Suppose π is stable w.r.t. some set S, and let $B \subseteq S$.

Key idea: We can efficiently compute $\pi'' = \text{split}(\text{split}(\pi, B), S \setminus B)$.

Let C be a block in π.

- If C has no transitions to S, C appears unchanged in π''.
- Otherwise, every state in C has a transition to S. In π'' these states are split into three sub-blocks:
 1. Those with transitions only to B.
 2. Those with transitions only to $S \setminus B$.
 3. Those with transitions to both B and $S \setminus B$.
Three-way Splitting

Let \(s \) be some state and \(\text{count}(s, B) \) denote the number of transitions from \(s \) to some state in \(B \). Then, since \(B \subseteq S \):

1. If \(\text{count}(s, B) = \text{count}(s, S) \) then \(s \) has transitions only to \(B \).
2. If \(\text{count}(s, B) = 0 \) then \(s \) has transitions only to \(S \setminus B \).
3. If \(0 < \text{count}(s, B) < \text{count}(s, S) \) then \(s \) has transitions to both \(B \) and \(S \setminus B \).

Takeaway

- If we know \(\text{count}(s, B) \) and \(\text{count}(s, S) \) then we can decide which sub-block \(s \) belongs to in \(O(1) \).
- Hence, if we know \(\text{count}(s, S) \) for all \(s \), we can compute \(\pi'' \) in \(O(|B| + m^{-1}(B)) \), where \(m^{-1}(B) \) is the number of transitions into the states of \(B \).
We keep:

- A current partition π, representing our current approximation for \sim. Initially, π contains two blocks: states with outgoing transitions, and those without.
- Another partition X, initially $\{P\}$. X will dictate what splits we perform.
- $\text{count}(s, S)$ for all $s \in P$ and $S \in X$. We keep this sparsely, so the value is 0 if there is no entry.

We maintain the invariants:

1. $\pi \subseteq X$, that is, π is always a refinement of X; and
2. π is stable w.r.t. X.
Paige-Tarjan Algorithm Invariants

1. \(\pi \subseteq X \), that is, \(\pi \) is always a refinement of \(X \); and
2. \(\pi \) is stable w.r.t. \(X \).

Call a block \(S \in X \) *simple*, if \(S \) is also in \(\pi \), and otherwise *compound*. It follows from the invariants that every compound block is the union of two or more blocks of \(\pi \).

Observe that when \(\pi = X \), \(\pi \) is stable w.r.t. itself and so \(\pi \) is a bisimulation. Otherwise, \(X \) contains at least one compound block.
Paige-Tarjan Algorithm

Repeat until $\pi = X$:

1. Pick any compound block $S \in X$.
2. Pick any block $B \in \pi$ such that $B \subseteq S$. Plainly, B is one of the blocks of π that make up S.
3. Replace π with $\pi'' = \text{split}(\text{split}(\pi, B), S \setminus B)$, using three-way splitting in $O(|B| + m^{-1}(B))$.
4. Update X with X'' formed by replacing S with B and $S \setminus B$.
5. Update count values, see next slide.

Return $\sim = \pi$.
At the end of each iteration, we need to replace all \(\text{count}(s, S) \) values with \(\text{count}(s, B) \) and \(\text{count}(s, S \setminus B) \) values. To do this, we:

1. Recycle the \(\text{count}(s, S) \) values for \(\text{count}(s, S \setminus B) \) (e.g. by reusing the ID for \(S \) for \(S \setminus B \)).

2. Then, for each transition to a state in \(B \), decrement its \(\text{count}(s, S \setminus B) \) value, and increment its \(\text{count}(s, B) \) value.

Thus, we can update the counts in \(O(|B| + m^{-1}(B)) \).
We prove the algorithm by induction. Initially, since $X = \{P\}$, $\pi \subseteq X$. Also, π is initially the blocks of states with transitions, and those without, which is precisely $\text{split}(P, P)$, so π is initially stable w.r.t. X.

We need to show that if the invariants hold before each step, they also hold after each step:

1. Since S was the union of blocks in π, and $B \in \pi$, we know that both B and $S \setminus B$ were the union of blocks in π. Since π'' is π after some splits, we see that B and $S \setminus B$ must also be the union of (possibly smaller) blocks in π''. Hence, $\pi'' \subseteq X''$.

2. Initially, π is stable w.r.t. X. π'' is stable w.r.t. B and $S \setminus B$ since they were used for splitting. Every other block B' in X'' was also in X, and so π was stable w.r.t. B'. Hence, π'' is also stable w.r.t. B' because $\pi'' \subseteq \pi$ so π'' is stable w.r.t. X''.
Proof.

Since we split X each time, we can make at most $n - 1$ splits, and thus the algorithm terminates.

Since we only ever split according to a union of blocks, this is merely an implementation of the previous algorithm, and correctness follows.
Paige-Tarjan Algorithm

How can we make sure this algorithm is fast?
Use plenty of pointers and doubly-linked lists!

Just kidding (kinda).

Remark

If we choose B such that $|B| \leq |S|/2$ then:

- Each state appears in some “B-set” at most $\log_2 n + 1$ times.
- Each transition is considered only when its destination state is considered, which is at most $\log_2 n + 1$ times.

Hence, the algorithm is $O((n + m) \log n) = O(m \log n)$!

How do we choose such a B? Compare the sizes of the first two sets of π that compose S: the smaller has the desired property.
Outline

1 Definitions

2 The fixed-point approach

3 An $O(nm)$ algorithm for strong bisimilarity

4 An $O(m \log n)$ algorithm for strong bisimilarity on single action LTS’

5 Handling multiple actions
Handling multiple actions

We reduce finding \sim on multiple action LTS' to finding \sim on a single action LTS.

\[U \xrightarrow{a_i} V \]

\[P_U \xrightarrow{} P_{U,a_i,V} \xrightarrow{} P_V \]
We use the same chain for all transitions, so we have
\(n + m + |\Sigma| + 1 = O(m) \) states, and \(2m + |\Sigma| = O(m) \) transitions.

Theorem

\(U \sim V \) if and only if \(P_U \sim P_V \).

This gives an \(O(m \log m) \) algorithm for bisimilarity on LTS’s!

